PREPARATION AND STUDY OF 1,8-OCTAMETHYLENEDIAMMONIUM CHLORONICKELATES

A. ANGOSO, J.L. MANZANO and E. RODRiGUEZ *

Departamento de Química Inorgánica, Facultad de Ciencias Químicas, *Universidad de Salamanca, 37008-Salamanca (Spain)*

(Received 27 July 1990)

ABSTRACT

The compound $(0nH_2)[Ni_2Cl_6(H_2O)_4]$ (I), where on = 1,8-octamethylenediamine, is obtained as flat yellow crystals by reaction between nickel(I1) chloride hexahydrate and the hydrochloride of the diamine. Dehydration of compound **I** leads to the reddish-yellow anhydrous compound $(\text{onH}_2)[\text{NiCl}_3]_2$ (II). Both compounds show diffuse reflectance spectra and magnetic moments typical of nickel(I1) in an octahedral environment. The compounds were also studied by IR spectroscopy, differential thermal analysis and thermogravimetric analysis.

INTRODUCTION

Nickel(I1) can adopt different geometries when forming coordination complexes with halide ions. Tetrahedral geometry is found in many compounds in which there are discrete intense blue $NiCl₄²⁻$ anions [1]. In the **compounds (RNH,),[NiCl,], the nickel does not have a tetrahedral structure but is surrounded by six chloride ions in an octahedral environment** $[2,3]$.

Related to the tetrachloronickelates are the complex species [NiCl, $(H_2O)_2$ ²⁻ and $[NiCl_4(ROH)_2]$ ²⁻ which are octahedral and have a yellowish **colour [3].**

The compounds of formula MNiX₃ ($M = K^+$, Cs^+ , N(CH_3)⁺; X = Cl⁻, **Br-) are generally reddish-yellow and the nickel achieves six coordination** by the formation of $[NiX_3]_n^{n-}$ polymer chains in which octahedra share **opposite faces [4,5].**

The present work is the continuation of a series of experiments carried out in our laboratory aimed at preparing and characterising the chloronickelates of different diprotonated aliphatic diamines [6].

^{*} Author to whom correspondence should be addressed.

EXPERIMENTAL

Instrumental techniques and reagents

The 1,8-octamethylenediamine and the nickel chloride hexahydrate were supplied by Aldrich. All chemicals were of analytical grade.

Fourier transform infrared (FTIR) spectra of the compounds were recorded using KBr pellets on a Perkin-Elmer Ml700 apparatus equipped with a data station. The electronic spectra of the nickel compounds were recorded on a Varian-Techtron apparatus, Model 635, using the diffuse reflectance technique and barium sulphate as reference.

Thermogravimetric (TG) curves were obtained in flowing air and argon $(45 \text{ cm}^3 \text{ min}^{-1})$ using a Perkin–Elmer Model 3600 instrument coupled to a data station; the heating rate was 5° C min⁻¹. Differential thermal analysis (DTA) was performed using a Perkin-Elmer 3600 instrument with the same conditions as for the TG curves and using alumina as the reference. The sample weights employed for thermal analysis were 7-12 mg.

Magnetic susceptibilities were determined at room temperature using a Stanton MC-5 Gouy-type balance. The diamagnetic corrections for the ligands were performed using Pascal's constants.

The powder diffractograms were recorded on a Siemens X-ray diffractometer Model D500, using Ni-filtered copper K_{α} radiation.

Preparation of the compounds

The preparation procedure is similar to that previously described by us [6]. A solution of nickel chloride hexahydrate $(0.10 \text{ mol and } 20 \text{ cm}^3 \text{ of } HCl)$ was added to a solution of the diamine hydrochloride $(0.05 \text{ mol and } 10 \text{ cm}^3)$ of water), onH₂Cl₂. The resulting solution was concentrated at 50 \degree C until the volume was reduced to 10 cm^3 , and placed in a desiccator with calcium chloride. After standing for several days, flat yellow crystals of hydrated compound I were obtained. By heating at 120° C in an oven, the compound I loses water molecules and the reddish-yellow anhydrous compound 11 is obtained. On standing compound **II** in a moist air atmosphere, it returns to the initial yellow compound I which shows the typical IR spectrum of the hydrated nickel compound.

The powder diffractogram of compound II no longer shows the characteristic lines of the NiCl, or on H_2Cl_2 , spectrum and, therefore, the dehydration is as follows

$$
(\text{onH}_2)[\text{Ni}_2\text{Cl}_6(\text{H}_2\text{O})_4] \rightleftharpoons (\text{onH}_2)[\text{NiCl}_3]_2 + 4\text{H}_2\text{O}
$$
 (1)

The metal content of compound I was determined complexometrically with EDTA using murexide as the indicator. The analysis of C, N, H and Cl were determined at the Institute of Bio-organic Chemistry of the CSIC

(Barcelona, Spain). Analytical results were: Ni, 21.5%; N, 5.8%; C, 18.0%; H, 5.6%; and Cl, 38.0%. $(C_8H_{22}N_2)[Ni_2Cl_6(H_2O)_4]$ calculated is: Ni, 21.42%; N, 5.11%; C, 17.51%; H, 5.47%; and Cl, 38.80%.

RESULTS AND DISCUSSIONS

Infrared spectra

The important IR bands of the nickel complexes and the hydrochloride of the diamine, and their assignments, are collected in Table 1. The IR spectrum of compound **I** shows an intense broad band in the 3500-3200 cm^{-1} zone which contains the OH and NH stretching modes of water molecules and alkyldiammonium cations. The intense band at 1624 cm^{-1} present in compound **I** (absent in compound **II)** is assigned to the OH deformation vibration mode. The NH deformation mode appears in both nickel compounds at 1602 cm^{-1} . The broad central band at $2030-2060$ cm^{-1} present in the nickel compounds and on H_2Cl_2 , is assigned to the $-NH_3^+$ vibration group [7]. The NH stretching bands of on H_2Cl_2 are shifted towards longer wavenumbers in the nickel compounds as a consequence of hydrogen bond formation $(NH \cdots Q$ or $NH \cdots Cl$), between the chlorocomplex anions and the diammonium cations [7,8].

Visible diffuse reflectance spectra

The diffuse reflectance spectra of the nickel complexes appear in Fig. 1 and are consistent with an octahedral environment for Ni(I1) [9]. The shoulder located at 13400 cm^{-1} in the reflectance spectrum of compound **I** is associated with the transition to the ${}^{1}E_{\sigma}$ state. Table 2 contains the

TABLE 1

 \overline{a} on $H_2^{2+} = 1,8$ -octamethylenediammonium; s = strong, m = medium, w = weak, b = broad.

Fig. 1. Diffuse reflectance spectra of the nickel compounds: a, $(\text{on}H_2)[Ni_2Cl_6(H_2O)_4]$; b, **(onH,)[NiCl,],.**

observed v_2 and v_3 transitions and the lowest energy transition, v_1 , which was calculated from v_2 and v_3 using Lever's method [10]. The same method was also used for the calculation of the inter-electronic repulsion parameter, *B*. The transition ν_1 coincides with the crystal field energy 10 Dq, and their values are consistent with an octahedral environment for $\text{NiCl}_4(\text{H}_2\text{O})_2$ and $NiCl₆$ in compounds I and II, respectively. The theoretical values of 10 Dq may be determined from f and g , Jørgensen's parameters [11], and they show good agreement with the Lever's method values

10 Dq[NiCl₆] =
$$
fg = 0.78 \times 8.7 = 6.78
$$
 kK
\n10 Dq[NiCl₄(H₂O)₂] = 2/6 × 10 Dq[Ni(H₂O)₆] + 4/6 × 10 Dq[NiCl₆]
\n= 7.42 kK (3)

For the hydrated compound, I, the Ni/Cl ratio and their stoichiometry do not permit the formation of discrete octahedral anions $[NiCl₄(H₂O)₂]^{2}$ so

TABLE 2

Crystal field and magnetic data

' Calculated from Lever's method.

' Calculated from Jorgensen's parameters.

Fig. 2. Thermal analysis of $\text{(onH}_2)\text{[Ni}_2\text{Cl}_6\text{(H}_2\text{O)}_4\text{].}$ The TG weight losses in air are represented by a solid line $($ —— $)$, the DTA curve in air by a solid line and the DTA curve in argon by a dashed line $(- - -)$.

that it may be present as a dimer or polymer. It is possible to propose a dimer structure for the anion complex of compound I, i.e. $[Ni_2Cl_6(H,O)_4]^{4-}$. This anion consists of two octahedra joined at an edge by two chlorine bridges whose axial positions are occupied by water molecules; this has been described for the analogous chlorometallates [12,13].

The reflectance spectrum of compound II is analogous to other trichloronickelate spectra previously described [4,5] that contain the polymeric anion $[NiCl_3]_n^{n-}$ in which $NiCl_6$ octahedra share opposite faces.

Thermal analysis

Figure 2 shows the TG and DTA curves of compound I and Table 3 contains its thermal data. The TG curve of compound I recorded in air

TABLE 3

DTA (air)	DTA (Ar)	Observations and TG weight loss $(\%$ calc./obs.)	E_a (kJ mol ⁻¹)
93.3 (end)	85.5 (end)	Loss of $2H_2O(6.5/6)$	257
176 (end)	165.5 (end)	Loss of $2H2O$ (13.1/12)	127
	175 (end)		
	225 (end)		
274 (end)	271 (end)		
241 (exo)	252 (end)	$NH4Cl$ (sublimation)	
469 (exo)		$C + NiO$ (72.8/72)	
	401 (end)	$C + Ni(78.6/74)$	

Thermal analysis of $(onH₂)[Ni₂Cl₆(H₂O)₄]$

atmosphere shows water loss in two steps. The activation energy, E_a , of the dehydration steps has been calculated for a first-order kinetic process [14]. The final residue of TG in air atmosphere ($\approx 500^{\circ}$ C) was identified as NiO. In argon, the residue obtained at $\approx 500^{\circ}$ C consists of carbon and metallic nickel. Both final residues were identified by X-ray diffractograms.

In the DTA curves (air and argon), the dehydration process appears as an endothermic effect. The peak at $340-350$ °C (air and argon) is produced by the sublimation of $NH₄Cl$, identified by IR spectroscopy. The DTA curve of onH₂Cl₂ recorded in air shows an exothermic peak at 381° C for the loss of $NH₄Cl.$

Additional peaks in the DTA curve of on H_2Cl_2 recorded in air appear at 185, 284 and 296 $^{\circ}$ C, with no weight loss. These peaks show solid state phase transitions in the chain conformation of the diammonium cation, forming a cis conformation from the all trans C-C hydrocarbon chain. Similar endothermic changes have been observed in other alkanediammonium compounds [15-171. In our compound **I,** the peaks which appear at 275°C (air), 255° C (argon) and 271° C (argon) can be also assigned to the same alkanediammonium conformational changes.

ACKNOWLEDGMENT

This research was supported by Grant Acciones Concertadas B-type from the University of Salamanca.

REFERENCES

- **1 N.S. Gill, J. Chem. Sot., 3512 (1961).**
- **2 S. Skaarup and R.W. Berg, J. Solid State Chem., 26 (1978) 59.**
- **3 J.R. Ferraro and A.T. Sherren, Inorg. Chem., 17 (1978) 2498.**
- **4 V.L. Goedken, L.M. Vallarino and J.V. Quaghano, J. Am. Chem. Sot., 92 (1970) 303.**
- **5 F.K. Ross and G.D. Stucky, J. Am. Chem. Sot., 92 (1970) 4538.**
- 6 M.A. Bañares, A. Angoso, J.L. Manzano, E. Rodríguez and M. Pechero, Synth. React. **Inorg. Met.-Org. Chem., 18 (1988) 231.**
- **7 L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1980.**
- **8 H.W. Smith and W.J. Stratton, Inorg. Chem., 16 (1977) 1640.**
- **9 A.B.P. Lever, Inorganic Electronic Spectroscopy, Elsevier, New York, 1984.**
- **10 A.B.P. Lever, J. Chem. Educ., 45 (1968) 711.**
- **11 C.K. Jorgensen, Oxidation Numbers and Oxidation States, Springer, New York, 1969.**
- **12 N. Fogel, C.C. Lin, C. Ford and W. Grindstaff, Inorg. Chem., 3 (1964) 720.**
- 13 B.Y. Enwiva and J. Silver, J. Chem. Soc. Dalton Trans., 16 (1983) 1039.
- **14 H.H. Horowitz and G. Metzger, Anal. Chem., 35 (1963) 1464.**
- **15 M.A. Baaares, A. Angoso and E. Rodriguez, Synth. React. Inorg. Met.-Org. Chem., 18 (1988) 757.**
- **16 V. Busico, A. Gaudio and M. Vacatello, Gazz. Chim. Ital., 111 (1981) 235.**
- **17 J. Tsau and D.F.R. Gilson, J. Phys. Chem., 72 (1968) 4082.**